The sophisticated design is characterized by

- a very good price-performance ratio
- optically approvable, flat and safe selvedges
- being functionally corresponding to prior, familiar devices
- the flexibility to adjust to carrying rods of different widths by use of exchangeable clamping parts
- the ability to utilize the existing wire cable or the electromagnet connections to drive the lateral motion of the needles
- an optimized, maximal shed opening
- ceramic inserts in all critical areas of the yarn path, while designed with consideration of bending properties of glass fibre
- glass leno needles individually produced in-house using abrasive flow machines with thread eyes being highly polished and having special hard chrome plating
- a user-friendly installation
- a reliable selvedge binding up to a speed of 1,000 picks per minute
- a dependable spare parts supply

To guarantee a trouble-free function of the K-GLASS® selvedge motion, indispensable components are

- special Klöcker cross leno cone creels with variable fastening adaptors with either integrated
  or
- external break detector systems for leno threads.

They make up the Klöcker functional unit.
The K-GLASS® Selvedge Motion is characterized by an optimized construction for the processing of finest glass yarns in modern weaving. At the same time, it is subject to low maintenance and does not require lubrication resulting in significant cost savings for the customer.

### The K-GLASS® Selvedge Motion

<table>
<thead>
<tr>
<th>head length (in mm)</th>
<th>carrying rod (in mm)</th>
<th>sym' maximum raising (in mm)</th>
<th>asym' + 5 mm maximum raising (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280 mm (11&quot;)</td>
<td>16,0</td>
<td>65,0</td>
<td>60,0</td>
</tr>
<tr>
<td></td>
<td>22,0</td>
<td>65,0</td>
<td>60,0</td>
</tr>
<tr>
<td>330 mm (13&quot;)</td>
<td>16,0</td>
<td>90,0</td>
<td>85,0</td>
</tr>
<tr>
<td></td>
<td>22,0</td>
<td>90,0</td>
<td>85,0</td>
</tr>
</tbody>
</table>

1) The descriptions „sym“ (symmetrical) and „asym“ (asymmetrical) refer to shedding.

The versions below are functionally corresponding to prior, familiar models and are designed to utilize the existing drive systems in use on the various types of weaving machines.